Black-Box Analysis: From Theory to Practice

- Teseo Schneider
- https://cs.nyu.edu/~teseo/

Who Am I?

 Assistant Professor/PostDoc in Computer Science at New York University

Courant Institute Of Mathematical Sciences

Geometric Computing Lab @ NYU **PhD Students**

Faculty

Daniele Panozzo

Denis Zorin

Postdoctoral Researchers

Teseo Schneider

Zhongshi Jiang

Francis Williams

Yixin Hu

Zachary Ferguson

Hanxiao Shen

Davi Colli Tozoni

Matt Morse

Leyi Zhu

Siqi Wang

https://cims.nyu.edu/gcl/

Course Goals

- Learn the basics of the finite element method (FEM)
- Understand the state-of-the-art in meshing and FEM
- Learn how to design, program, and analyze algorithms for geometric computing
- Hands-on experience with shape modeling and geometry processing algorithms
- Learn how to batch process large collections of geometric data and integrate it in deep learning pipelines

Geometric Computing

Discrete Differential Geometry

- Surface and volumes representation
- Differential properties and operators

Numerical Method for PDEs

- Focus on real-time approximations
- Irregular domains

Big Data

	 High Performance Computing Vectorized computation Multi-core and distributed computation GPU accelerators
Geometric Computing	
	 Human Computer Interaction Objective evaluation of the results Architects and artists benefits from our research

Applications

- Black-Box Analysis: Practice

Course Overview

- The course relies on Conda
- Add conda-forge channel
- Create an environment
- Activate an environment

a cross-platform package and environment management system

conda config --add channels conda-forge

conda create -n course

Libraries Overview

Cross Platform: Windows, MacOSX, Linux

- Numpy, basic linear algebra conda install
- Scipy, advanced sparse algebra
- Plotly, basic plotting
- Quadpy, quadrature \bullet

Basics

numpy

conda install scipy

conda install plotly

pip install quadpy

plotly

quad

- The all examples uses Jupyter Notebooks that contain live python code
- Install Jupyter

Run Jupyter

a web application that allows you to create and share documents

conda install jupyter

jupyter notebook

12

https://github.com/teseoch/fem-intro

Jupyter Demo!