Black-Box Analysis: From **Theory** to Practice

https://cs.nyu.edu/~teseo/

Teseo Schneider

Research Overview

Blender

Appearance Fabricability Stability Robustness

Cost

OnShape

AutoCAD

Volume Reduction

Copyright nTopology

Examples

Heat Flux Increase

Design Pipeline

Optimization/Simulation

Modification

3D Geometry Is Challenging

- A canonical representation does not exist
- Most operations are not closed under the floating point representation:
 - Not handling this results in lack of robustness
 - nightmare to debug)

 Handling it increases dramatically the algorithmic complexity, increasing the chances of implementation errors (which are a

Case Study: Tetrahedral Meshing

CGAL

CGAL (without feature)

DelPSC

Success Rate

CGAL 57.2%

CGAL (no features) 79.0%

TetGen 49.5%

DelPSC 37.1%

- in real-data
- example trimming for NURBS), introducing a plethora of degenerate configurations
- even if the algorithm is provably correct in arbitrary precision
- methods

Why?

• Problem statement imposes strong assumptions on the input, which are rare

Modeling tools use operations not closed under the representation (for

• Implementation of a complex algorithm in floating point is a major challenge,

• Large collections of data was not available during the development of these

Let's do it again

- automation
- computation leads to simpler, but slower, algorithms

• High running times are preferable than a failure, since they enable

• If robust floating-point computation is difficult to get right, exact

• Exact geometry is often **not required** (and sometimes not desired)

Which element is more accurate for a non-linear elasticity problem given a fixed wall clock time budget? 3 Ζ

Quadratic Lagrangian Tetrahedra

Quadratic Lagrangian/Serendipity Hexahedra

ICHANCHIA ./

Quadratic Splines on Hexahedra (IGA)

103.

Problem

- Solve elliptic PDE $\mathcal{F}(x, u, \nabla u, D^2 u) = b$
 - subject to u = d on $\partial \Omega_D$ and $\nabla u \cdot n = f$ on $\partial \Omega_N$
- For common elliptic PDEs
 - Elasticity (Linear and Non-Linear)
 - Poisson

A Large Scale Comparison of Tetrahedral and Hexahedral Elements for Finite Element Analysis Teseo Schneider, Yixin Hu, Xifeng Gao, Jeremie Dumas, Denis Zorin, Daniele Panozzo, submitted, 2019 [Paper] [Code] [Data]

Ω_D S_{N}

Choice of Basis

Q - hexahedron

Displacement of endpoint

/	~

Incompressible

P2

Incompressible

Dataset

- Hexalab <u>https://www.hexalab.net/</u>
 - 16 state-of-the-art hex-meshing algorithms
 - •237 meshes
 - •8 flips 3.4%
- Thingi10k
 - 3200 meshes with MeshGems
 - 577 flips 18.0%
- number of vertices

• For a given hex mesh, we generate a tetrahedral mesh with the same

Interactive Plot

https://polyfem.github.io/tet-vs-hex/plot.html

Hexalab – no-flips

Hexalab – no-flips

Hexalab – no-flips

Thingi10k

5e-3 7e-3 8e-3 9e-3 1e-2 6e-3

average edge length

Thingi10k

р1 q1 q2 s

5e-3 7e-3 8e-3 9e-3 1e-2 6e-3

average edge length

Thingi10k

Which discretization provides lower running time for a fixed accuracy?

Can you mesh robustly without any assumption on the input?

Does mesh quality affect the accuracy of the FEM solution?

Envelope

Envelope

Envelope

Fast Triangulation in the Wild

Input

Initial mesh

Hybrid mesh

2D Triangulation

Input 2D Boundary

Coarser **Output Triangle Mesh** Conforming

Faster **Physical Simulation**

Accurate

Curved 2D Triangulation: TriWild

"Cleanup" the input curves.

TriWild: Robust Triangulation with Curve Constraints Yixin Hu, Teseo Schneider, Xifeng Gao, Qingnan Zhou, Alec Jacobson, Denis Zorin, Daniele Panozzo, ACM Transaction on Graphics (SIGGRAPH), 2019 [Paper] [Code] [Data]

Linear Mesh Generation & Mesh Improvement

Curved Mesh Improvement

High Curvature Input & Inflection Point Separation

TriWild

Linear mesh for easier curving.

 μ -separation

inear Mesh Generation & Mesh Improvement

Curved Mesh Improvement

Input:

(Generated by TriWild)

Input:

(Generated by TriWild)

Application – Diffusion Curves

iffusion Curve

Application – Stokes

Using Curved Mesh

Application – Stokes

Using Linear Mesh

Curved Mesh

Fast Tetrahedral Meshing in the Wild

Input

Preprocessing

Incremental Triangle Insertion

Fast Tetrahedral Meshing in the Wild

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, Daniele Panozzo, Arxiv, 2019 [Paper] [Code]

Mesh Improvement

Output

Faster than Tetgen!

Which discretization provides lower running time for a fixed accuracy?

Does mesh quality affect the accuracy of the FEM solution?

No Problem, Let's Remesh!

Our Solution

Locally increase the order of elements

Decoupling Simulation Accuracy from Mesh Quality Teseo Schneider, Yixin Hu, Jeremie Dumas, Xifeng Gao, Daniele Panozzo, Denis Zorin, ACM Transaction on Graphics (SIGGRAPH Asia), 2018 [Paper] [Code]

Refinement

- A posteriori h-refinement
 - Increase the mesh resolution locally [Wu 01], [Simnett 09], [Wicke 10], [Pfaff 14], ...

- A posteriori p-refinement
 - Solve, then increase order where necessary [Babuška 94], [Kaufmann 13], [Bargteil 14], [Edwards 14], ...

- Ours is a priori p-refinement
 - We increase order only based on the input

$k = \frac{\ln\left(B\hat{h}^{\hat{k}+1}\frac{\sigma_E^2}{\hat{\sigma}^2}\right) - \ln h_E}{k}$ $\ln h_E$ 1. Use formula

Overview

Order of an element

$\frac{\ln\left(B\hat{h}^{\hat{k}+1}\frac{\sigma_E^2}{\hat{\sigma}^2}\right) - \ln h_E}{\ln h_E}$ k = -

Magic Formula

79

User parameter, = 3 $k = \frac{\ln\left(\mathbf{B}\hat{h}^{\hat{k}+1}\frac{\sigma_E^2}{\hat{\sigma}^2}\right) - \ln h_E}{k}$ $\ln h_E$

Magic Formula

Average edge length $k = \frac{\ln\left(B\hat{h}^{\hat{k}+1}\frac{\sigma_E^2}{\hat{\sigma}^2}\right) - \ln h_E}{k}$ $\ln h_E$

Magic Formula

81

Base order, usually 1

$k = \frac{\ln\left(B\hat{h}^{\hat{k}+1}\frac{\sigma_E^2}{\hat{\sigma}^2}\right) - \ln h_E}{k}$ $\ln h_E$

Magic Formula

82

$k = \frac{\ln\left(B\hat{h}^{\hat{k}+1}\frac{\sigma_E^2}{\hat{\sigma}^2}\right) - \ln h_E}{\ln h_E}$

Magic Formula

$\hat{\sigma}_{2D} = \sqrt{3/6}$ $\hat{\sigma}_{3D} = \sqrt{6}/12$

$k = \frac{\ln\left(B\hat{h}^{\hat{k}+1}\frac{\sigma_E^2}{\hat{\sigma}^2}\right) - \ln h_E}{k}$ $\ln h_E$

 $\sigma_E = \frac{\rho_E}{h_E}$

Magic Formula

$\hat{\sigma}_{2D} = \sqrt{3/6}$ $\hat{\sigma}_{3D} = \sqrt{6}/12$

$k = \frac{\ln\left(B\hat{h}^{\hat{k}+1}\frac{\sigma_E^2}{\hat{\sigma}^2}\right) - \ln h_E}{k}$ $\ln h_E$ 1. Use formula

Overview

2. Propagate degrees

Degree Propagation

- For each element ${\cal E}$
- Compute k_E using formula
- Increase the order (if necessary) of:
 - The element E
 - All edge/face neighbors

- For each element E
- Compute k_E using formula
- Increase the order (if necessary) of:
 - The element E
 - All edge/face neighbors

$k = \frac{\ln\left(B\hat{h}^{\hat{k}+1}\frac{\sigma_E^2}{\hat{\sigma}^2}\right) - \ln h_E}{k}$ $\ln h_E$ 1. Use formula

3. Construct C⁰ basis

Overview

2. Propagate degrees

Building Continuous Basis

Linear

 $\begin{aligned} \mathsf{Linear}\\ a+bt+0t^2+0t^3\end{aligned}$

 $\varphi_{l1}(p_{c3}) = w_1 = \frac{2}{3}$ $\varphi_{l1}(p_{c4}) = w_2 = \frac{1}{3}$

Building Continuous Basis

Linear

Linear $a + bt + 0t^2 + 0t^3$

$k = \frac{\ln\left(B\hat{h}^{\hat{k}+1}\frac{\sigma_E^2}{\hat{\sigma}^2}\right) - \ln h_E}{k}$ $\ln h_E$ 1. Use formula

3. Construct C⁰ basis

Overview

2. Propagate degrees

4. Simulate!

Back to Laplace

Standard

Our

Back to Laplace

Standard

Our

Back to Laplace

Standard

Our

Tetwild[Hu 18]

~10k Optimized

• ~10k Not Optimized

Large Dataset

$e_h = \|u - u_h\|_0 \le Ch^2 \|u\|_2$

• Standard L₂ error estimate for linear elements

• Standard L₂ error estimate for linear elements $e_h = \|u - u_h\|_0 \le Ch^2 \|u\|_2$ L₂ norm or average error

FEM Error Estimate

• Standard L₂ error estimate for linear elements $e_h = \|u - u_h\|_0 \le Ch^2 \|u\|_2$ Exact solution

FEM Error Estimate

• Standard L₂ error estimate for linear elements $e_h = \|u - u_h\|_0 \le Ch^2 \|u\|_2$ Approximated solution

• Standard L₂ error estimate for linear elements $e_h = ||u - u_h||_0 \le Ch^2 ||u||_2$

• Different h for every model!

• Standard L₂ error estimate for linear elements $e_h = \|u - u_h\|_0 \le Ch^2 \|u\|_2$

- Different h for every model!
- L₂ Efficiency $E_{L_2} = \frac{\|u - u_h\|_0}{h^2}$

• Standard L₂ error estimate for linear elements $e_h = \|u - u_h\|_0 \le Ch^2 \|u\|_2$

- Different h for every model!
- L₂ Efficiency $E_{L_2} = \frac{\|u - u_h\|_0}{h^2}$

Small values are good!

Efficiency

Degree Distribution

100%

Number of DOF

Timings

Overall Time (Meshing + Simulation)

111

Overall Time (Meshing + Simulation)

112

Future Work

Analysis for elliptic PDEs only. Does it make a difference for Contacts or time-dependent problems?

Maybe

Meshing still takes way longer than the FEM solve. Can we make it real-time? Maybe

Can we use a similar strategy to limit/avoid remeshing in dynamic simulations? Why not?

Large Scale Comparison

NYU | Faculty Digital Archive

FDA > Communities & Collections > Courant Institute of Mathematical Sciences > A Large Scale Comparison of Tetrahedral and Hexahedral Elements for Finite Element Analysis

A Large Scale Comparison of Tetrahedral and Hexahedral Elements for Finite Element Analysis

Browse

Search

👤 Sign on to: 👻

MOST DOWNLOADED

A Large Scale Comparison of Tetrahedral and Hexahedral Elements for Finite Element Analysis Dataset - Hexalab Schneider, Teseo; Hu, Yixin; Gao, Xifeng; Dumas, Jeremie; Zorin, Denis; Panozzo, Daniele

DISCOVER	
AUTHOR	
Dumas, Jeremie	3
Gao, Xifeng	3
Hu, Yixin	3
Panozzo, Daniele	3
Schneider, Teseo	3
Zorin, Denis	3

https://archive.nyu.edu/handle/2451/44221

